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INTRODUCTION

This document summarizes Phase I of a Refurbishment Cost Study of the
Thermal Protection System of a Space Shuttle Vehicle performed for NASA-LRC
by McDonnell Douglas Astronautics Company-East (MDAC-East), under Contract
NAS1-10093, Detailed results are contained in NASA CR-111832. Phase I was
performed in an eight month period beginning June 1970. The purpose of
Phase I was to identify labor costs associated with inspection, repair, and
replacement of components of representative thermal protection systems
(TPS) for space shuttle orbiter application. Those TPS considered included
ablative, metallic, and nonablative, nonmetallic heat shields. In particular
Phase I consisted of defining primary load carrying structural arrangements
(Task 1), defining TPS attachment techniques (Task 2), generating operational
labor costs estimates (Task 3), evaluatinpg design and cost uncertainties
(Task 4), and design TPS component parts for a full-scale mockup and formulating
a detailed experimental test plan (Task 5). Phase II, when funded, will
consist of performing various maintenance tasks to establish test data on
refurbishment costs and to develop efficient refurbishment techniques.

Several significant conclusions may be drawn from this study. These
include the following:

Primary and support structure has little effect on scheduled TPS
maintenance.

TPS panel joints and seals are critical to concept feasibility and
refurbishment.

Maintenance labor costs are sensitive to TPS type and method of
attachment.

Design and cost uncertainties are primarily due to lack of maintenance
experience on space shuttle type TPS.

An experimental test program on actual or simulated TPS components
is best approach to resolve uncertainties and verify labor cost
estimates.

A test program incorporating, as a minimum, environmental temperature
simulation is desirable for complete maintenance definition.

Study results could significantly effect NASA space shuttle TPS
trade studies and baseline TPS selection.

TPS maintenance material and support costs should be determined for
complete maintenance cost projections.

The assessment of key problem areas and what should be done in the near
future to resolve uncertainties is discussed in subsequent paragraphs.

Mr. D. W. Haas, study manager, was responsible for overall technical
direction of the study. In support of the study manager were other members of
the McDonnell Douglas engineering staff, including Mr. V. M. Gerler,

Mr. E. J. Carroll, Mr. J. Komeshak, Mr. H. S. Zahn, and Mr. J. K. Lehman.



Mr. C. W. Stroud, of the Materials Division, Langley Research Center,
Hampton, Va., was the technical monitor for the study.

OVERVIEW

The economic feasibility of a space shuttle vehicle hinges on the ability
to reuse a vehicle from 50 to 100 times with minimum refurbishment or more
precisely, minimum maintenance. Thus the success of any highly reusable
system depends in large part on achievement of low operating costs. A
significant fraction of the total operational cost is the wvehicle's thermal
protection system (TPS) cost. Therefore, this is an area where the achievement
of cost goals is imperative. Operational costs include all recurring labor
and material costs required to support the flight program from initial
operational capability (IOC) through program completion.

Within the operational activity, inspection and scheduled and unscheduled
maintenance labor cost predictions of candidate TPS are limited. 1In this study
only the cost of labor on a unit basis to perform the required refurbishment
tasks were estimated since these costs are primarily independent of vehicle
configuration and program definition. Costs associated with material require-
ments were not calculated since they are mainly configuration and program
dependent.

Arrangement of orbiter primary structural components to which TPS are
attached were identified. Extensive use was made of those structural concepts
developed by MDAC in its continuing R&D activities during NASA Phase A and
current Phase B shuttle studies. To supplement this activity, a review of
space shuttle Phase A studies conducted by other contractors was performed to
identify representative structural arrangements. Typical examples of the
primary structures investigated are shown in Figure 1.

In our examination and definition of primary and support structure for the
various TPS concepts indications are that these type structures have little,
if any, effect on scheduled maintenance of an externally removable TPS panel
concept. This assumes that the deflections experienced by the primary and
support structure under repeated loading conditions are always within design
limits and surface continuity is maintained at all times, Any adverse loading
conditions which would tend to distort the structure could complicate panel
removal by binding mechanical fasteners. This would come under the category of
unscheduled maintenance.

From our review of related study efforts indications are that arrangement
of primary and support structure do not dictate the type and attachment method
of TPS. Properly designed the primary and support structure can accommodate
a variety of approaches such that replaceability and/or interchangeability of
panels can be accomplished with nominal effects on the refurbishment cycle.

Study results indicate that the externally removable heat shield panel
concept for a space shuttle TPS is most efficient for near optimum system
reusability/refurbishability. The panel concept offers minimum weight
(primarily due to structural-temperature allowables) and shorter wehicle
recertification turnaround times, since the whole vehicle need not be involved
in the refurbishment cycle.



Certain TPS attachment methods evolved as prime candidates for space
shuttle application. These include the bonded, simple mechanical fastener,
pi-strap, multiple mechanical fastener, and key/keyway concept for ablative
and nonablative, nonmetallic type heat shields and the flush fastener and
pi-straps for metallic heatshields. These concepts are illustrated in Figure 2.
Refurbishment task analyses of these concepts clearly indicate maintenance
labor costs to be sensitive to the type and method of attachment of the
particular TPS being considered. Past experience in cost predictions indicates
that RDT&E and investment costs are less sensitive to TPS configuration.

Since the results of this study show that operational labor costs are
sensitive to configuration, the magnitude of the design and cost feasibility
uncertainties must be established before realistic cost projections can be
made.
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Problems encountered in estimating the refurbishment costs are best
described as being either technological or economical. Problem severity, both
from a design and cost viewpoint, is difficult if not impossible in some cases
to assess in a paper type study. This is due primarily to the lack of
sufficient operational maintenance experience on shuttle type TPS. Such
experience can only be obtained by experimentation with actual or simulated
hardware.

Probably the most significant factor effecting refurbishment labor costs
is panel size. Table 1 gives estimated manpower requirements for each
principal attachment concept in terms of manhours per square foot of exposed
TPS area and elapsed time in hours to complete the entire refurbishment cycle.
These data were plotted versus panel size as shown in Figures 3 and 4 to show
trends involved with parameter variation. Indications are that labor costs
decrease as panel size increases, whereas elapsed time requirements increase
as panel size increases. 1In the case of the removal and replacement of the
ablative and hardened compacted fibers (HCF) heat shield systems there appears to
be little operational cost advantage in refurbishment of panels greater than 20
square feet. In the case of metallic heat shield systems the near minimum cost
point seems to be between 40 and 60 square feet. The degree of uncertainty in
thegse cost estimates lies in the exact tradeoffs between the number of men and
type of support equipment needed to handle and install a panel as the panel size
increases. Since no spacecraft buillt to date has employed a significantly large
panel (i.e., greater than 20 by 20 inches) maintenance data is indeed limited
or nonexistent.
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Removal and replacement requirements for special areas of the vehicle such
as leading edges, body chines, and internal insulation, are given in Table 2.
In these cases, manpower requirements are the total manhours to perform
refurbishment of a given segment length or insulation area.

Typical repair problems associated with various types of heat shield
systems were investigated and a task analysis prepared for representative
material defects. Results of this investigation are given in Table 3. Existing
procedures, written from the manufacturer's viewpoint, were used when possible.

REMOVAL AND REPLACEMENT REQUIREMENTS

MANPOWER (M'HR/FTZ) ELAPSED TIME (HOURS)
HEAT SHIELD ATTACH CONCEPT 1 T
o o , PANEL SIZ!’?_ PANEL SIZE
NO, DESCRIPTION SMALL MEDIUM LARGE SMALL MEDIUM LARGE
o ABLATIVE OR HCF S N T . .
33.1 (ablative) - -
1 Bonded 1.30 - - 39.1 (HCF)
2 Mechanical Fastener 0.58 0.49 0.47 1.45 2.30 3.35
3 Pi-strap 0.72 0.54 0.50 1.85 2.50 3.50
4A Pi-strap/multiple fastener 0.72 0.54 0.50 1.85 2.50 3.55
4B Multiple mechanical fastener 1.17 0.95 0.92 1.95 4.25 5.40
5 Keyway 0.47 0.31 0.26 1.25 1.80 1.95
METALLIC
6A Flush fastener 0.47 - - 1.25 - -
6B Flush fastener/middle support 0.23 - - 1.45 - -
7A Pi-strap 0.49 0.41 0.31 1.25 1.95 2.10
78 Pi-strap/middle support 0.47 0.28 0.20 3.20 3.50 3.75
INTERNAL INSULATION . 0.60 B _ 3.15 N

TABLE 1



REMOVAL AND REPLACEMENT REPAIR REQUIREMENTS
REQUIREMENTS - SPECIAL AREAS

ELAPSED TIME
CONCEPT MANHOURS ELAPSED TIME (HOURS) CONCEPT MANHOURS (HOURS) NESCRIPTION

Carbon/carbon leading edge 1.30 1.20

{20 inch segment) Ablative 2.10 11.10 1 to 3 in dia
Ablative leading edge 2.15 2.10

(20 inch segment) HCF 2.60 28.60 1 to 3 in dia
Ablative chine 1.90 1.85

(40 inch segment) Carbon/carbon 0.50 3.50 Surface scratches
Insulation 8.30 3.15

Metallic 3.35 7.65 Coati
(20 by 100 inches) cating
TABLE 2 TABLE 3

Ingpection requirements for various types of heat shield systems were
derived. Estimates shown in Table 4 are for exterior surface visual inspection
only and are based on a common panel size of 20 by 20 inches.

INSPECTION REQUIREMENTS
(PANEL SIZE: 20 x 20 INCHES)

CONCEPT MANHOURS ELAPSED TIYE (HOURS)
Ablative 0.08 0.08
HCF 0.10 0.10
Carbon/carbon 0.08 0.08
Metallic (CB) 0.15 0.15
TABLE 4

To show possible variation in refurbishment labor costs between various
heat shield attachment concepts investigated in this study, a representative
orbiter TPS configuration was considered. The TPS area consigered was the
planform surface of a representative orbiter vehicle (5000 ft ).

Using manpower requirement data presented in Table 1 and a labor rate of
$15 per manhour, for medium size panels, data presented in Figures 5 through 7
were generated, For examples given, general areas of discontinuities were not
considered since these areas are highly configuration and program oriented.
The curves show differences in refurbishment costs between concepts and the
rate of increase in labor costs with increasing number of flights, based on
various use life estimates per panel.

Uncertainties exist concerning fastener installation and removal; the
latter appearing to be the most critical. In the case of an ablative or HCF
heat shield system, fastener removal involves locating the fastener and
removal of either the used or conditioned insulating material down to a depth
which exposes the mechanical fastener. Location of the fastener may or may
not be a serious problem. If the technique of using small pilot holes in the
insulating material proves to be a workable scheme, removal will be relatively
straightforward. However, if after thermal environment exposure these holes
become obscure due to the products of ablation or fusing of the coatings, time
consuming and costly refurbishment techniques would be involved. Depending
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on the number of fasteners used, this one factor could make a particular

attachment concept noncompetitive.

Unfortunately there is not sufficient

data available at this time to assess its severity. In the case of metallic
fasteners, the problem also exists but with potentially less severity. In
this instance the problem consists of flowing of the coatings into the attach
points causing fasteners to freeze up, making removal more difficult.

Another critical problem area involves maintenance operation adequacy
to make panel repairs while the panel is attached to the vehicle, This may
involve nothing more than reconditioning surface scratches, up to complete
replacement of material. The ability of the maintenance crew to inspect the
damaged part, assess the degree of repair, and then to make the repair hinges
on the location of the repair on the vehicle and the tools and equipment needed.
These latter items range from only light hand tools to complicated jig fixtures.



The advantage of repair in place is that it eliminates or minimizes time
consuming removal operations of a complete panel assembly. This of course
helps to achieve low operating costs.

In the area of heat shield attachment, the most critical feasibility and
related maintenance design aspect concerns joints and seals between adjacent
panels. In this area incompatabilities exist. On the one hand gaps between
panels must be provided to allow for the normal expansion and contraction of
the panels under various environmental extremes. Yet these same gaps have to
be minimized, if not eliminated, to prevent the inflow of hot boundary layer
gases and water. Gaps are caused by a variety of conditions the most critical
of which are attributable to cryo tank shrinkage, primary structure thermal
gradients, body deflection during boost separation, panel expansion during
entry and manufacturing tolerances.

The problem is not as acute with some heat shield types, as with others,
In the case of ablative heat shields, elastromeric type seals, provide sufficient
flexibility to resolve the problem. The same problem is solved in the case
of metallic heat shields by simply overlapping panel joints. However, with
HCF type heat shields, the problem is more critical due to the low shear strength
capabilities of the material, causing edges to be particularly suspectible to
damage. In this instance the goal of the designer is to provide a joint and/or
seal which is compatible with the anticipated use life of the basic heat shield
material (i.e., 100 flights) so as to minimize refurbishment. Silastic seals in
this case have limited application because of their reusability aspects. Over-
lapping the joints with other high strength temperature metals or ceramics in
combination with various stepped geometry is a possible solution.

In those instances where accurate cost estimation was difficult, or where
technical or practical feasibility of a concept was questionable, detailed
experiment plans were developed to resolve uncertainties. These plans call

for fabrication and experimental testing of component parts of selected TPS
for use on a full scale mockup (Figure 8) at NASA-LRC during Phase II. The
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component parts include selected heat shield panels and assoclated attachments,
the panel support structure between TPS panels and the basic mockup, and TPS
panel arrangement and mockup installation. Pertinent aspects of these
components are shown in Figures 9 through 14.
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The proposed test matrix is shown in Figure 15. The location of the
specified TPS configurations on the mockup is shown in Figures 16 .
Six different tests are outlined which can be performed individually or in
combination with each other., Major activities and significant milestones for
the overall program plan are shown in Figure 17.
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The sequence of tests called for under each test plan are referred to in
the classification of the particular maintenance task function under considera-
tion. These include initial installation, initial inspection, removal and
replacement of a simulated damaged panel, simulated damaged panel repair in
place on mockup, environmental testing, and removal and replacement of used

or heated TPS panels.



For each maintenance task or simulation test called for, reference is
made to a maintanance task schedule similar to the one shown in Figure 18.
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These schedules give details of individual refurbishment activities associated
with the particular maintenance function and equipment to perform the particular
refurbishment activity. This format of test conduct serves two purposes.

It establishes when personnel and equipment are needed, and it serves as a
checklist of duties much like that of an operational plan maintenance manual.
Each test plan also contains provision for test data measurement and evaluation,
documentation, and a fabrication and test milestone schedule.

CONCLUSIONS

Economical development of TPS requiring easily performed, routine
inspection and a minimum level of unscheduled repair and replacement will
occur only if those refurbishment activities to achieve low-cost goals are
identified and related to appropriate system design features before the
designs are committed to production. The resolution of key design and cost
uncertainties, 1f obtained in a timely fashion, could have a major impact on
NASA's current and future space shuttle activities., Such impact is already
showing its effect in that the Phase I results of this study are currently
being considered by MDAC personnel in their TPS trade studies being performed
for the NASA Phase B shuttle activities.

In particular Phase I milestone commitments and study results were
instrumental in; establishing the baseline metallic TPS configuration for
the Phase B orbiter design and supplementary test program, laying the ground
work for a feasible HCF panel joint configuration, providing a data base
upon which all operational maintenance labor cost estimates were made for the
shuttle, and pin-pointing key design problem areas associated with heat shield
attachment which enhanced orbiter TPS design trade studies. The timeliness
and effect which the TPS Refurbishment Cost Study (Phase I) has had on
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the NASA Phase B shuttle program and that which Phase IT could have on the
NASA Phase B follow-on options are shown in Figure 19.
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Since the results of this study have shown that maintenance labor costs
are particularly sensitive to TPS design, refurbishment techniques may be a
significant factor in selecting a baseline TPS for the shuttle. Unfortunately
not all aerospace companys agree as to the magnitude of the maintenance labor
costs since there is no historical data to use as a reference. Thus, it is
imperative that these estimates be verified as soon as possible.

The most efficient method of resolving key problems is through experimental
examination of specific refurbishment tasks on actual or simulated hardware.
The proposed test program will accomplish these objectives. The program 1s
aimed towards examining those concepts which exhibit desirable individual
characteristics insofar as minimizing refurbishment activities associated with
future space shuttle maintenance, and those concepts which when combined in
an experimental program cover the full spectra of anticipated refurbishment
problems.

The proposed test program is geared to obtaining maximum data for minimum
cost. To accomplish this fabrication and assembly, activities will be closely
monitored and controlled through cost-effective administrative systems. TPS
panels fabricated for mockup use need not be flight quality, which minimizes
quality controls. The key to a successful test program lies in the manner in
which the data is obtained, the accuracy of the data and methods by which the
data are presented., For these reasons a field tested video tape recording
system, used previously by MDAC on related programs, provides the best method
of measuring human performance. A significant factor effecting TPS reuse/
refurbishment is its physical change after exposure to ground and flight
environments. Thus, a certain amount of temperature testing is desirable in
order to create a realistic maintenance environment. Timely initiation and
completion of the phase II effort will greatly enhance the overall aspects of
TPS design and cost predictions for future space shuttle activities.
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A factor not considered in this study is that of welght, Thus a particular
concept which shows low cost maintenance potential may not necessarily be the
lightest weight design or vice versa. Therefore, weight/cost trade-off studies
should be performed on candidate system as soon as possible before any one
scheme is committed to detail development and subsequent production.

Establishing realistic refurbishment procedures and attendant labor
costs 1s only one aspect of the overall maintenance of a space shuttle vehicle
TPS. Costs associated with material procurement, shipping, transportation,
and related support equipment will also influence overall maintenarnce.
Further analysis of the costs associated with these items should be determined
in order to establish the real cost drivers.

Supporting research and technology contracts such as the one reported on
herein greatly enhance main stream shuttle activity, For this reason MDAC provides
for a close working relationship between the personnel of both activities in order
to achieve the highest value to cost ratio, which is the ultimate goal of the
overall shuttle program.
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